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Quasiprobability Distribution and Phase
Distribution in Interacting Fock Space

P. K. Das'
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In this paper we study quasiprobability distribution and phase distribution for coherent
states, squeezed states, and Kerr states in one-mode interacting Fock space.
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1. INTRODUCTION

To deal with fluctuating fields we introduce a distribution for the complex field
amplitude in classical coherence theory. By integrating over the strength of the field
we then obtain the phase distribution. But to define a Hermitian phase operator
in the quantum mechanical description of phase goes back to the work of Dirac
(1927). Dirac defined a phase operator by a polar decomposition of the annihilation
operator. Thereafter, Susskind and Glogower (1964), Carruthers and Nieto (1968),
Pegg and Barnett (1989), and Shapiro and Shepard (1991) contributed significantly.
Dirac’s phase operator was modified by Susskind and Glogower to a one-sided
unitary operator. Nevertheless, their phase operator has been used in quantum
optics extensively. Phase measurement statistics was introduced by Shapiro and
Shepard through quantum estimation theory (Helstrom, 1976).

Keeping the ideas of Susskind and Glogower in mind we describe here a
phase operator in interacting Fock space (Accardi and Bozejko, 1998) and study
phase distribution of coherent states, squeezed states (Das, 2002), and Kerr states.

The work is organized as follows. In Section 2, we give preliminaries and
notations. In Section 3, we introduce Kerr states in interacting Fock space. In
Section 4, we describe coherent state representation of Kerr state. In Section 5,
we calculate quasiprobability distribution of squeezed states and Kerr states. In
Section 6, we give a description of phase distribution that we would like to associate
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to a given density operator. In Section 7, we give a few illustrative examples. In
fact, we describe how the phase distribution will look like when we take coherent
states, squeezed states, and Kerr states in interacting Fock space. And finally in
Section 8 we give a conclusion.

2. PRELIMINARIES AND NOTATIONS

As a vector space one-mode interacting Fock spd€3 is defined by
() =Epcin) 1)
n=0

whereC|n) is called then-particle subspace. The differemiparticle subspaces
are orthogonal, that is, the sum in (1) is orthogonal. The norm of the vgote
given by

(n|n)=x, )

where{i,})0. The norm introduced in (2) mak&$C) a Hilbert space.
An arbitrary vectorf in I'(C) is given by

f =col0) +ci|l) +C22) + -+ Cln) + ... 3)

with || | = (3020 [l *An) Y% (0.
We now consider the following actions &r{C):

a‘in) = In+1)

ain+ 1) = ) (4)
An
at is called thecreation operatorand its adjointa is called theannihilation
operator To define the annihilation operator we have taken the convention
0/0=0.

We observe that

An
(n|n)=(@"(n—1),n)=(n—1),an) = ;

and
An Ani M A
2= ——.=... === (6)
An-1 An—2 A0 Ao

By (2) we observe from (6) thaty = 1.
The commutation relation takes the form

ANl AN
AN AN-1
whereN is the number operator defined bin) = n|n).

[a,a"] =

()
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3. GENERATION OF KERR STATE
The Kerr vectors il (C) are defined by
Pr () = 7@ 2@a Dy, ®)

where f, € I'(C) is a coherent vector given by (6),is a constant, and*a is
defined by

An

ataln) = [n)

n-1
Now,

¢Dt< _ e%ya*a(a*a—l) f,

00 n
i o
— eiya*a(a*a—l)l// |a|2 -1/2 |n>
(leel) nE:O .

-wwﬁmz MM“‘M

huﬂm Mm%l]m=2wm )
n=0

where

Oh (|oz|2) 1/2)L eznn 1()\An -1) (10)

n

The photon number distribution

=|(n 1 65| = lohnl?

for the Kerr state is identical to that of the coherent state because the probability
amplitudeq, andry differ only by a phase factor.

4. COHERENT STATE REPRESENTATION

To obtain the coherent state representation of Kerr stgiteve try to calculate
the matrix element{,, ®X), which contains all important information about the
statedX.

The matrix element is obtained by the following method. We utilize the com-
pleteness relation of coherent state™iftC)

l=/deMf
aeC
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where
du(e) = ¥ (jal?o (jo?)r dr do (11)

with & = r € ando (x) is some weight function.
Now,
(fﬂl’l(bo}(() = (fot’i Ufot)

_ f o) (f, U1 ) (o )

- / ) (i 1) (0 UTe) (12)
whereU = eira‘ta@ta-1)
Now,
(s o) = ¥y 2y oy 23 COEL (13)
n=0
and

(furs Ufey) = w10/ Y2y (jon ) 1/22(“)51“1) DEEGEY (g

Hence we have
(fot;u fa) (for, U fal) = 1//(|a1|2)—11/f(|a|2)—l/21/f(|

« 35 G @V i

Ol/ 2)—1/2

m,n=0
Thus,
(fut’y (bK) = / c dﬂ(al) ( thl! fvt)(fa’: u fotl)
1€

o

o0
- _ @M@ Am 1
= Y () (e Py (e D) e e Y
m=0,n=0
x / dpt(or) (@) ()"
OllEC
Py 3y 19)

— Z 1[/(|a|2)—2]./21/j(|0{/|2)71/2

n=0
where we have utilized the fagfg”o dxo(x)x" = % (Das, 2002).
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5. QUASIPROBABILITY DISTRIBUTION

The quasiprobability distributionknown as theQ function, is the diagonal
matrix elements of the density operator in a pure coherent state

Qla) = (alﬁla)

We now calculate the quasiprobability distribution for the following states:

(17)

5.1. Squeezed States
For the squeezed statéqDas, 2002),

o0 2 12 o
F= ] o (AMAghs - - - Aan-1) Z“nM'Z”) (18)
=0 (h2Aahe - - - Aon-1)%A2n =5 M2hade- - Aon

we take the density operator to be
p=1F)(fl, a=lale® (19)

and calculate the quasiprobability distributiQfc’) as
! 1 / !
Q) = —(f,, pf,)
T

1
= —(fu, IF)(fIfa)
T

1
= =|(fy, )
T
1, A1A3As - Aon—1 s on—
== Zazna” Ty (A2
7| = AoAade - -+ Aan—2A2n
~1/2 2
e A1hshs - - Aon_1)?
« Z|Ol|2n (A1A32s 2n ;) (20)
=0 (A2hade - - Aan—1)*A2n
5.2. Kerr States
For the Kerr stategX (9),
o0
(DaK = anm) (21)
n=0
where
n i An An
Gn = Y (jo )2 i Y (22)
n
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we take the density operator to be
p=los) ol a=lal

g

and calculate the quasiprobability distributiQfa’) as

= (fe. 65 01 10)
= %|(foﬂy ¢L<)}2

1

T

Q) =

6. PHASE DISTRIBUTION

To obtain phase distribution we consider first the phase operator

-1/2
+ a*a> a

A A
p_ ( N+l AN
AN AN-1

N @M@ Ly, 0 (o _q)
3 (D) Y2y (e PN e
n=0

and try to find the solution of the following eigenvalue equation

Pfs = Bfg

wherefg = > aq|n).
Now,

Pfy =

:Zan Antl [ Ant1 _1/2|n)
A Ho o

2
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(24)

(25)

(26)
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Bfs = _Banln) @7
n=0

From (25)—(27) we see tha}, satisfies the following difference equation:

A 12
an+1 < "”) = pan
An

That is

-1/2
Xn-&-l) /

an+1=/3< o

and so on.
Thus,
An -1/2
an=p" (70) a0 = B"(An) Y?a0
Hence

fp = ;anm) = aoni_;ﬁ”(xn)*”ﬂm

We takeag = 1 andg = |8] €°.
Then

[e¢]

fo =Y ") 2IBI"IN)

n=0
Henceforth, we shall denote this vector as

fo =" €"(nn) 281" )
n=0

where 0< 6 < 27 and call f, a phase vector it (C).
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Norm of the phase vector is given by
Ifol? = Y €™ () 2(hm) 281" ™ | M)
m,n=0
— 1 2n o 2n
Z;ﬁl =Y |B1" (o0
n=0 n=0
(if 18] < 1).

The phase vectors are complete. We can show that
1 2
— o | [ dvix ot
T Jx Jo

dv(x, 8) = du(x)do

where

Here we consider the set consisting of the pointg =0, 1, 2,...,

the measure oX which equals
1
1B

at the pointx = n andd is the Lebesgue measure on the circle.
Define the operator

Mn =

[fo)(fol : T(C) — T(C)
by

[fo)(fol = (fo, £)fy
with f =Y "7 anln).

Now,
(fo, £) =) e ™ ()"?BI"an
n=0
and
(fo, )= > &™) "Y2181™(1n)"%|B]"a0| M)
m,n=0
Hence
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(28)

(29)

andu(x) is

(30)

(1)

1 2
2 /x/o dvlx, Ot (Tl T = fxd“(x) > (am) B Pl
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1 2

" — g (m—n)6 de

2 /o
[o¢]
2

= / dpa(x) Z 181°"n)

X n=0

_ 2n
Zanm 1Bl |ﬁ|2n

= f (32)

We use the vectord, to associate to a given density operatgra phase
distribution as follows:

PO) = 5 (10, 1)

L i(n—m) [m) [n)
m;ow |BI"€ (J_ F) (33)

The P(0) as defined in (33) is positive, owing to the positivity @fand is
normalized

2
/X/O P@®)dv(x,0) =1 (34)
where
dv(x, ) = du(x)do (35)
for,
2
P@)dv(x,0) = | du(x) 18] Iﬁln
[ poraveor= fLone 32 miar [
(n-m) Im)_n)
x € de (m,p An)
_ S (N )
/du(x)glﬂl ( = An)
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Thephase distributiorover the window O< 6 < 2 for any vectorf is then
defined by

PO) = 5o I(fs, D)

7. EXAMPLES

We now consider some important states in the Hilbert spg€¢and compute
their corresponding phase distributions.

7.1. Coherent States
For the coherent statdg (Das, 2002),

fo = v (a2 —In) (37)
n=0 "N

we take the density operator to be
p=1f)(fal, o=la|e® (38)

and calculate the phase distributiBi®) as

PO) = 5 (1. 1)

1

= Z(fg,lfa)(fdfa)

= o, 1P (39)
2

1 [ .
:Z;E:w%%WWm%Mrmwwﬁrm
n=0

7.2. Squeezed States
For the squeezed statégDas, 2002),

o Garsrs - Aamt)? 17728 Aahahse A
o Z'“'Zn 1A3A5 -+ - Aon-a Zan 1A3A5 - - 2n—1|2n> (40)
= (A2Aahe - - - Aon-1)%A2n 5 A2rakec A

we take the density operator to be

p=1f)fl, a=lal® (41)
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and calculate the phase distributiBii@) as
1
P@©) = 5 (fs, pTo)
JT

1
= Z(fé?u”)(”fﬁ)

1
= It D
1 & e AAzds - Aono1 _
- Zeln(QO 29)|ﬂ|2n|a|n n w(|a|2) 1/2
27 | =4 AoAahe - -+ Aon—oa/Aon

2

~172
« i e (AMAzrs -+ - Aono1)?
= (h2Aahe - - - Aon-1)%Aan

7.3. Kerr States
For the Kerr stategX (9),

o8 =Y i)
n=0

where

o i, o
O = Iﬂ(l(xlz)*l/z)L—ezykn—l(kn—1 Y
n

we take the density operator to be
p=l¢a)los] a=lale®

and calculate the phase distributiBii@) as
1
P@©) = 5 (fs, po)
JT

1
= E(f@,|¢5><¢5|fe)

1
=§’(fey¢5)}2

1] _ 4y iy kn (n g
Z Zeln(Qo 9)|13|n|a|n()m) 1/2w(|a|2) l/zezykn—l()hn—l )
n=0
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(42)

(43)

(44)

(45)

(46)



2024 Das

8. CONCLUSION

In conclusion, we have first introduced Kerr states in the interacting Fock
space and studied quasiprobability distribution of squeezed states and Kerr states
in the space and then studied phase distribution in the space by defining a phase
operator analogous to that studied by Susskind and Glogower and calculated spe-
cific phase distributions in the case of coherent states, squeezed states, and Kerr
states.
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